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STATIONARY DISTRIBUTIONS OF PARTICLES BY SIZE IN 
FINITE COAGULATING SYSTEMS WITH DISINTEGRATION* 

E. R. DOMILOVSKII, A. A. LUSHNIKOV and V. N. PISKUNOV 

A problem of stationary distribution of particles in a disperse phase according to 

size, where the particles are subjected to coagulation and disintegration processes, 
is considered. Analytic expressions are obtained for the mean number of particles 

of arbitrary mass in a stationary distribution. A limiting passage to an infinite 

system is studied. One of the basic factors in the mechanics of aerosols, which 

determines the distribution of the particles according to their size is the process 

of coagulation of the particles in the disperse phase, caused by their collisions 

with each other. This is often accompanied by a competing process of division or 

disintegration of the particles caused by some concrete mechanism (e.g. disintegra- 

tion of particles in the turbulent pulsations of air, or the instability of droplets 

under surface deformation /1,2/). The kinetic coagulation equation was first 

generalized to the case of the systems with decomposition in /3/. A model of forma- 

tion of precipitation from a warm cloud with the drop disintegration process taken 

into account, was constructed in /4/, and in /5/ an attempt was made to explain the 

characteristic form of the stationary spectra of the particles in systems with co- 

agulation and disintegration. 

A probabilistic approach to the study of coagulation processes in disperse systems was 

formulated in /6,7/; the coagulation was regarded, within the framework of this approach, as 

a Markovian process. Numerical modelling of the coagulation processes was carried out in 

/8,9/ using the Monte-Carlo method. This approach yielded a number of results not accounted 

for by the Smoluchowski theory, e.g. the appearance of super-particles /lo/. Until now, only 

a small number of analytic solutions for the probabilistic problems of the coagulation theory 

have been obtained /7/. 
1. We use the Smoluchowski theory (see e.g. /l/) to study the kinetics of the coagulation 

systems with disintegration of the particles taken into account. The state of the coagulating 

system at every instant of time is described by an averaged mass spectrum cg (t) where cp (t) 

denotes the concentration of the particles of mass g at the instant t (every particle is as- 
sumed to be composed of g monomers of unit mass). The evolution of the spectrum caused by 

coalescence of the particles following their collision and their disintegration, are describ- 

ed by a kinetic equation of the form 

(1.1) 

Here K (fi, 4 is the probability of coagulation occurring per unit time, in a unit volume, 

L(g,n) is the probability of disintegration of a particle and 6,,, is the Kronecker delta. 

We shall consider a particular case when L and K are connected by the following relation: 

(1 + &,,) 'PI'P& (I, m) = '~r+m K (I, m) (1.2) 

where 9, is an arbitrary positive function of natural argument and p1 =: 1, 

2. In recent years a more general approach to the problem of describing the coagulating 

systems has been developed /6,7/, based on the same physical assumptions as the Smoluchowski 
theory. A homogeneous space of volume V filled with particles is studied. Every state of 
this system is characterized by a mass spectrum 

Q = {Q..., nj..., n,..., n,..., n&f) 

where ng is the number of particles composed of g monomers (filling numbers). Every state Q 
has an associated, time-dependent probability w(Q, t). It is assumed that the particles move 

chaotically under the action of certain random forces and either disintegrate, or collide and 
coalesce. A single collision causes a coalescence of two particles and, as a result, the 
system changes its state to 
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Q’ = {IZl..., 121 - I,..., 1?,* -- l..., U$ I- I..., /inI), g 1 I,! 
the mass spectrum of which differs from the previous one by just three filling numbers (two 
if identical particles collide). The disintegration corresponds to a reverse process Q'--Q_ 
If the rates of transitions Q--Q-> Q---Q ((Q-)+ CC@ are known, then the equation for Ilf(Q,t) 
is obtained in the form 

dkl’ (Q. I) --;ii---=Cn(Q,(,-)lv(y-,t)-~~(C),f)C‘4(()+,!)) -;-CH({~,()')II'((!';f)-ll'(!),t)CN(()-,(!) (2.1) 

n+ 
.c 

Cl+ o+ 

Expressions for the rates of transition it (ai Q-) and H (Q', 0) 
u- 

are obtained in terms of 
K(/,m) and L(1,m) from the following combinatorial expressions: 

.4 (Q, Q-) = K (I, m) nz (Q-) In,, (V-f - &,7J i I/ (1 ~'- &,,,,). I3 (Q, Q’) 7: rE,+nl&+) L (1. m) 
We use the expression IQ(Q). to indicate that the number !lg belongs to the state Q. The total 
mass of all particles 

;gn&+If 

is preserved in the coagulation and disintegration processes. 
The Smoluchowski theory is obtained from the proposed approach as a result of the passage 

to the thermodynamic limit (volume and mean filling numbers both tending to infinity with 
their ratio remaining finite). The passage was studied in detail in /7/. A stationaryregime 
is feasible in the systems with disintegration. This can be obtained from the equation (2.1) 
by putting ilK’i dt --= 0. Let us investigate the stationary solutions in the case when the rate 
of disintegration is connected with the coagulation coefficients by the relation (1.2). This 
occurs e.g. when a collision between the drops leads to formation of an excited drop with ex- 
cess energy, the latter causing its subsequent disintegration. Since during the disinteqra- 
tion particles of mass different from 1 and nzmay form, this case cannot be reduced to slow 
coagulation. 

If the relation (1.2) holds, then, taking into account (2.1) we obtain a stationary solu- 
tion of the form 

(2.2) 

where B',(M) describes the probability of occurrence of the configuration {_11,0,0....()}. The 
relation (2.2) follows from the equality 

rl (0, ~>~,lC' (Q-1 1) ((,-, /J,ll' ((Jr (2.3) 

Taking into account the fact that I?( (Vi = 111 ((2) -:~ 1, % (O-) Y n,,, (V) i 1, and the remaining ,I\. (C/-i= 
U,(Q), we obtain (2.31. We show in the same manner that 1j (0. c~')ll' (V-L sc ;t (Q+. ($)II(Q) for any 

pair of configurations Q,Q+. Thus the solution (2.2) secures not only the integral balance of 
the probabilities for an arbitrary configuration 0, but also the equality of the probability 
fluxes for any pair of configurations v,,f&. To complete the determination of cv(Q) we require 
to find W,(M). Taking into account the equation 

we obtain 

We solve the recurrence relation (2.4) for Pr using the generating function 

From (2.4) we obtain the following expression for I (z): 

Let us consider the stationary spectrum 

12.4) 

(2.5) 

Following the derivation of (2.4), we find 

C.S -- PJ@ i (T,,P,,i) i (2.6) 
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In order to pass to the infinite systems, we must find the asymptotics of PM as il/+oo. 

For P,,, given by (2.4), we have 

Here the integration is carried out along the contour encircling the coordinate origin in the 

complex z-plane, in the anticlockwise direction_ Estimating the value of the integral with 

help of the saddle point method, we obtain 

where .tO denotes the point at which Q (X) = 0. From the expression for 1: we find, that the 

saddle point is given by the equation 

where (1 is regarded as the mass of the particles per unit volume. Then we have 

and this yields the mass spectrum in an infinite system 

c, s = X$/(c, 

To illustrate this, we consider some concrete examples of the function 'ps. 
lo. Q'6. From (2.5) follows f(~)=(1 P~)-v-l, i.e. 

P[ = V (I; + 1) (T’ + I - 1) ! Z! 

The quantity T" is found from (2.7), a which in this case assumes the form 

r, znn = 50 i (1 - IO) = p 

For the stationary spectrum in an infi%!te system we have 

cg s = g-1 [p / (p + l)P 
2O. 'ps = /R'. In this case we obtain for f(r) and PM 

(2.7) 

(2.8) 

M-l 
l'bz f (2) = erp (b---I ’ * ’ 

From (2.7) we obtain, for .r,, 

The quantity y<l, y-0 as p-Oand y-i when p-00. The stationary spectrum in an infinite 
system has the form 

. 

cg s = by&! 

3. Let us analyze the connection between the stationary spectrum in an infinite system, 

and the stationary (d/ dt = 0) solutions of the Smoluchowski equation (1.1) for the systems 
with disintegration. When the relation (1.2) holds, the solution (2.8) is an exact solution 
of the stationary equation (1.1) for any values of zO. To choose X0, we must take into 
account the law of conservation of mass per unit volume 

Bgcgs=p 

and this makes natural the choice of 50 fro: the relation (2.7). We must remember that the 
stationary regime is realized for any value of the density, provided that the series 

has a nonzero radius of convergence. In this case u (O)=O and U(Z) increases faster than 
z, i.e. the equation u (.c) = p has a unique positive solutions,,. Since the series is summed 

at the point X0 (its sum is equal to p), it follows that the quantities gc, s are also sum- 
mable. 

In conclusion we indicate that the problem of coagulation with disintegrations in finite 

systems is equivalent to the problem of dynamics of a cyclic structure of an element of a 
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group of substitutions under the action of random transpositions (see /11/j. 
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